Cardiomyocyte-specific overexpression of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock.
نویسندگان
چکیده
Myocardial dysfunction contributes to the high mortality of patients with endotoxemia. Although nitric oxide (NO) has been implicated in the pathogenesis of septic cardiovascular dysfunction, the role of myocardial NO synthase 3 (NOS3) remains incompletely defined. Here we show that mice with cardiomyocyte-specific NOS3 overexpression (NOS3TG) are protected from myocardial dysfunction and death associated with endotoxemia. Endotoxin induced more marked impairment of Ca(2+) transients and cellular contraction in wild-type than in NOS3TG cardiomyocytes, in part, because of greater total sarcoplasmic reticulum Ca(2+) load and myofilament sensitivity to Ca(2+) in the latter during endotoxemia. Endotoxin increased reactive oxygen species production in wild-type but not NOS3TG hearts, in part, because of increased xanthine oxidase activity. Inhibition of NOS by N(G)-nitro-l-arginine-methyl ester restored the ability of endotoxin to increase reactive oxygen species production and xanthine oxidase activity in NOS3TG hearts to the levels measured in endotoxin-challenged wild-type hearts. Allopurinol, a xanthine oxidase inhibitor, attenuated endotoxin-induced reactive oxygen species accumulation and myocardial dysfunction in wild-type mice. The protective effects of cardiomyocyte NOS3 on myocardial function and survival were further confirmed in a murine model of polymicrobial sepsis. These results suggest that increased myocardial NO levels attenuate endotoxin-induced reactive oxygen species production and increase total sarcoplasmic reticulum Ca(2+) load and myofilament sensitivity to Ca(2+), thereby reducing myocardial dysfunction and mortality in murine models of septic shock.
منابع مشابه
Reduction of cardiomyocyte S-nitrosylation by S-nitrosoglutathione reductase protects against sepsis-induced myocardial depression.
Myocardial depression is an important contributor to morbidity and mortality in septic patients. Nitric oxide (NO) plays an important role in the development of septic cardiomyopathy, but also has protective effects. Recent evidence has indicated that NO exerts many of its downstream effects on the cardiovascular system via protein S-nitrosylation, which is negatively regulated by S-nitrosoglut...
متن کاملCardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death.
Increased inducible nitric oxide synthase (iNOS) expression is a component of the immune response and has been demonstrated in cardiomyocytes in septic shock, myocarditis, transplant rejection, ischemia, and dilated cardiomyopathy. To explore whether the consequences of such expression are adaptive or pathogenic, we have generated a transgenic mouse model conditionally targeting the expression ...
متن کاملBrain-Derived Neurotrophic Factor Attenuates Septic Myocardial Dysfunction via eNOS/NO Pathway in Rats
Sepsis-induced myocardial dysfunction increases mortality in sepsis, yet the underlying mechanism is unclear. Brain-derived neurotrophic factor (BDNF) has been found to enhance cardiomyocyte function, but whether BDNF has a beneficial effect against septic myocardial dysfunction is unknown. Septic shock was induced by cecal ligation and puncture (CLP). BDNF was expressed in primary cardiomyocyt...
متن کاملOverexpression of GTP Cyclohydrolase 1 Feedback Regulatory Protein Is Protective in a Murine Model of Septic Shock
Overproduction of nitric oxide (NO) by inducible NO synthase contributes toward refractory hypotension, impaired microvascular perfusion, and end-organ damage in septic shock patients. Tetrahydrobiopterin (BH4) is an essential NOS cofactor. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for BH4 biosynthesis. Under inflammatory conditions, GCH1 activity and hence BH4 levels are increase...
متن کاملDeeper understanding of mechanisms contributing to sepsis-induced myocardial dysfunction
The inflammatory response of sepsis results in organ dysfunction, including myocardial dysfunction. Myocardial dysfunction is particularly important in patients with severe septic shock who progress to a hypodynamic pre-terminal phase. Multiple aspects of this septic inflammatory response contribute to the pathogenesis of decreased ventricular contractility. Inflammatory cytokines released by i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 100 1 شماره
صفحات -
تاریخ انتشار 2007